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Abstract 
 
The flow of a conducting fluid past a circular cylinder placed centrally in a channel subjected 
to an imposed transverse magnetic field has been simulated to study the effect of a magnetic 
field on vortex shedding at different Reynolds numbers varying from 50 to 250. The two-
dimensional incompressible laminar viscous flow equations are solved using a second-order 
implicit unstructured collocated grid finite volume method. An imposed transverse magnetic 
field markedly reduces the unsteady lift amplitude indicating a reduction in the strength of the 
shed vortices. It is observed, that the periodic vortex shedding at the higher Reynolds 
numbers can be completely suppressed if a sufficiently strong magnetic field is imposed. The 
required magnetic field strength to suppress shedding increases with Reynolds number. The 
simulation shows that the separated zone behind the cylinder in a steady flow is reduced as 
the magnetic field strength is increased. Due attention is given to resolve and study the 
unsteady cylinder wake and its interaction with the shear-layer on the channel wall in the 
presence of a magnetic field. A critical value of the Hartmann number for complete 
suppression of the shedding at a given Reynolds number is found. 
 
Keywords: transverse magnetic field, Hartmann number, vortex shedding, wake, circular 
cylinder, separation 
 
 
Introduction 

 

The flow over a circular cylindrical body is a common phenomenon in many engineering 
applications. The flow is essentially unsteady except at very low Reynolds numbers less than 
about 50. The steady flow at a low Reynolds number is characterized by steady separation 
and a closed near wake of recirculating flow. At relatively higher Reynolds numbers, the 
relevant unsteady flows are characterized by the periodic shedding of vortices and unsteady 
separated vortex wake. The unsteady flow exerts fluctuating forces on the immersed bodies. 
The fluctuating forces on the bluff body may cause the body to vibrate, which may be severe 
for a range of natural frequency to the vortex shedding frequency ratio, particularly if the 
mass ratio and damping are low. The control of such ‘flow-induced vibration’ can be 
achieved if the vortex shedding and/or the size of the separated zone behind the body are 
controlled. An imposed transverse magnetic field does the job satisfactorily when the fluid is 
electrically conducting. The use of magnetic field in the cross-stream direction is a novel 
method of controlling the separated zone behind the body, which in turn helps to reduce or 
eliminate the periodic vortex shedding and the resulting flow-induced vibration in a 
conducting fluid. Bramley [1974a, 1974b] studied the steady two-dimensional incompressible 
MHD flow past a circular cylinder with an applied magnetic field parallel to the main flow 
using analytical and numerical methods. It was observed that with an applied magnetic field 
the flow remained attached to the cylinder longer and in some cases did not separate until the 
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rear stagnation point. Gerbeth et al. [1990] studied steady unidirectional MHD flow around a 
cylinder driven by crossed electric and magnetic fields analytically using series solution. 
Josserand et al. [1993] studied the effect of an aligned magnetic field in the flow of a liquid 
metal past a cylinder and observed that the magnetic field could reduce the drag on the 
cylinder and the Karman street behind the cylinder was suppressed for a sufficient value of 
the magnetic field. Mutschke et al. [1998] studied the controlling influence of external 
magnetic field on the wake instabilities in the flow of an electrically conducting fluid around 
a circular cylinder. Midya et al. [2003] investigated the magnetohydrodynamic effect on 
viscous flow in a channel with constriction.  It was observed that the transverse magnetic 
field reduced the size of the separated zone downstream of the constriction and the separation 
could be eliminated with a large magnetic field. The wall shear stress, however, increased 
with the strength of the imposed magnetic field. Sekhar et al. [2006] investigated laminar 
flow past a circular cylinder subjected to inline magnetic field and observed that parallel 
magnetic field reduced the wake length. Singha et al. [2007] studied the effect of an applied 
transverse magnetic field on steady as well as periodic vortex-shedding flow around a square 
cylinder using an explicit staggered grid finite difference method. Recently Knaepen et al. 
[2004], Kassinos et al. [2007], Sarris et al. [2007] have studied the structure of MHD 
turbulence and transport processes in MHD turbulent flows under different conditions using 
LES and DNS techniques. 

  
In the present work, the incompressible viscous flow of an electrically conducting fluid 

around a circular cylinder confined symmetrically between two parallel walls in the presence 
of a uniform transverse magnetic field is studied numerically. The incompressible Navier-
Stokes equations are solved using an unstructured collocated grid finite volume method. The 
solution is advanced in time using a second-order implicit scheme. The study is performed at 
several Reynolds numbers over a range of magnetic-field strength expressed in terms of the 
nondimensional Hartmann number. The study shows that the separated wake length decreases 
with the increase in magnetic field for steady flow cases. The imposed magnetic field reduces 
the strength of the shed vortices and, hence, reduces the flow asymmetry and lift amplitude in 
unsteady flows at higher Reynolds numbers. Moreover, the unsteady flows at higher 
Reynolds numbers can be made steady when the applied magnetic field is sufficiently strong. 
 

Configuration and Numerical Method 
 

The configuration considered is a two dimensional incompressible viscous flow of 
electrically conducting fluid with constant conductivity   and density   around a circular 
cylinder of diameter D placed symmetrically between two flat plates as in Figure 1. A 
uniform magnetic field  0B  is imposed along the cross-flow direction. The distance between 

the two plane walls (H) is 4D. A parabolic streamwise velocity 
2

1 1 4
y

u V
H

     
   

 is 

specified at the inlet, where V  is the centerline velocity. A plane solid wall near a circular 
cylinder can suppress the vortex shedding from the cylinder if the gap between them is less 
than a critical value corresponding to the Reynolds number (Zovatto and Pedrizetti, 2001). 
However, a gap space of 1.5D corresponding to the channel height of 4D is well above the 
critical height for suppression of the shedding due to wall influence for Re 100 .  
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Figure 1. The computational flow domain 

 
 

Due to magnetohydrodynamic interactions, an induced electric field zE  is produced in 

the direction perpendicular to the plane of the flow, which in turn produces an induced 
magnetic field in the streamwise direction. It is assumed that the flows considered are of very 
small magnetic Reynolds number Rem ( VD , where V is the characteristic velocity and 

  is the permeability) and, hence, the induced magnetic field is negligible so that there is no 
distortion in the imposed magnetic field (Shercliff, 1965). It is also assumed that the magnetic 
field is not distorted near the body due to the differences in permeability and conductivity 
between the solid body and the conducting fluid. Thus, a short-circuited situation is assumed 
as if the induced current is taken through a stationary closed loop made of perfect conductor 
lying in the direction perpendicular to the stream. Consequently, the induced electric 
field  zE  becomes zero (Shercliff, 1965) and a net current 0B Q  flows normal to the plane 

of the flow, where Q is the fluid volume flow rate. It is further assumed that the electric field 
due to the polarization of charges is negligible. An elegant justification for these assumptions 
is given by Midya et al. [2003] for the flow of a conducting fluid in a channel with 
constriction. The presence of a body in the flow, which usually will have a different 
conductivity, may reduce the accuracy of some of the assumptions. The induced magnetic 
and electric fields will alter the current flow and the current continuity needs to be taken in to 
account for better accuracy. However, when the conductivities of the flowing fluid and the 
cylinder material are nearly of the same order of magnitude and the Hartmann number is 
small, the induced electric and magnetic fields will not be large enough to have significant 
effect on the overall flow behavior. With this assumption, the current continuity is not 
considered in the present study and it is felt that the solution will be able to capture the 
dominant features of the flow both qualitatively and quantitatively. With the consideration of 
the Lorentz forces due to the external magnetic field and the assumptions stated above, the 
governing equations for two-dimensional flows in their nondimensional form are given by  
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In equation (2), 1 1,K   2 1K   and Re  is the Reynolds number VD
  with   being the 

kinematic viscosity. The characteristic velocity V is taken as the centerline inflow velocity 

and the Hartmann number  mH  is defined as 0mH B D 
 . 

 
 The governing equations (1) and (2) are numerically solved using an unstructured cell-

centered collocated grid finite volume method. Integrated over a small control volume, which 
in this case is a triangular cell of the mesh, the equations can be written as  
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where V is the velocity vector of the fluid element,   and S  denote the nondimensional 
control volume and the bounding surface of the control volume respectively. The unit vector 
normal to the surface S is n̂ and in  denotes the Cartesian component of the unit normal 

vector. 
 

The convective terms in the momentum equation for a cell are computed as the sum of 
fluxes across the three faces where the flux across each face is computed as a product of the 
outward mass flux and the appropriate cell face velocity component. The velocity on a face is 
obtained using a quadratic upwind interpolation (Leonard, 1979) from the velocity at three 
points. Two of these three points are the cell centers on either side of the face and the third 
point is the projection of the distant vertex of the upstream triangle on the line joining the two 
cell centers.  

 
The diffusive terms in the momentum equation integrated over a triangular control 

volume is expressed in the following generic form: 
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The gradients along the face of a control volume are computed using the values of the 

variable at the two adjacent cell centers and at the two terminating vertices of the face. The 
value of the variable   at a vertex of the face is obtained by an interpolation from the cell-
centered values of the surrounding cells using the linearity-preserving Laplacian due to 
Holmes and Connel [1989].  The procedure provides the diffusive flux terms for a cell with 
center P in terms of the variable at P and at the center of all the neighboring cells shared by 
the vertices of the cell P. 
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where 1 2 3, ,N N N  are the number of cells connected to the three vertices of the triangular cell 

P. 
 
The source term in the momentum equation representing the Lorentz force is discretized 

using the cell-centered variables and the cell volume. The solution is advanced in time using 
the implicit Crank-Nicolson scheme. The discretized equation is written in the form 
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where P and f denote the cell-centre and a cell face respectively. dF  is the diffusive flux term, 

L is the Lorentz force source term and m is mass flux. The index i =1, 2 denotes the 
streamwise  x  and cross-stream  y direction respectively. The above equation is solved 

along with the discretized continuity equation written as 
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A provisional velocity field  *V is first computed using the latest available mass flux 

and dropping the pressure term from the equation (7). The modified equation is solved using 
a Gauss-Seidel iterative solver. The provisional velocity field is used to compute the cell face 
velocities using the Rhie and Chow [1983] interpolation to avoid the spurious oscillations 
usually associated with a collocated grid incompressible solution. The mass flux is then 
updated and a new pressure field is computed using the updated mass flux  *

fm . 
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The pressure is computed from equation (9) using Gauss-Seidel iteration. The pressure 

field obtained with the provisional velocity field  *V does not satisfy the continuity 

equation. An iterative method is used for the convergence of the mass flux fm to a 

predetermined tolerance level. In this ‘inner iteration’, the mass flux is corrected using the 
pressure field just obtained. A new provisional velocity field is then recalculated using the 
equation (7) with the pressure term dropped but the new mass flux included. The pressure 
field is recalculated using the new provisional velocity field. This iterative loop is continued 

until the mass flux is converged. Finally, the velocity field  1n
iPu  is computed using the 

equation (7) with the converged mass flux and pressure. 
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The boundary conditions used for the solution are as follows. A convective boundary 
condition is used in the exit plane so that the vortices pass out smoothly. The convective 
boundary condition is taken as  
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 
                  (10) 

 
The convection velocity cU  is the average of the velocity distribution at the exit plane. The 

no-slip boundary condition is satisfied on all solid boundaries. The pressure satisfies the 
Neumann condition on all boundaries. 
  
Results and Discussions 
 

All the computations reported here are carried out on a computational mesh made up of 
58378 triangular elements connecting 29797 vertices. The mesh is adequately refined so that 
the wake and boundary layers are appropriately resolved. To assess the accuracy of the 
developed code, the computed results for flow about a circular cylinder in an unconfined 
domain are compared with the solution due to Zhou et al. [1999]. The comparisons at 
Reynolds numbers 100 and 200 are presented in Table 1. The Strouhal number  *

SSt f D V , 

the mean drag coefficient and the RMS lift coefficient agree quite well with the values 
reported. The parameter *

Sf  denotes the vortex shedding frequency of the rigid cylinder.  

 
Table 1: Comparison of computed results for an unconfined cylinder 

 
 Re  St  meandC rmslC

 
Zhou et al. (1999) 100 0.163 1.475 0.219 
Present simulation 100 0.165 1.451 0.226 
Zhou et al. (1999) 200 0.192 1.320 - 
Present simulation 200 0.195 1.337 0.474 

 
 

The effects of the imposed transverse magnetic field are studied for various Reynolds 
numbers in the range 50 Re 250   with varying magnetic field strength. However, typical 
results for flows at Reynolds numbers 50 and 250 are presented here for brevity. The 
streamlines of the flow at Reynolds number 50 subjected to various imposed transverse 
magnetic fields are shown in Figure 2(a-c). The flow is steady and symmetric about the 
centerline at all Hartmann numbers. With zero Hartmann number, the flow at Re = 50 is time-
independent with a pair of counter-rotating vortices attached to the rear face of the cylinder 
forming a closed wake. The streamlines in the figures clearly show that the flow remain 
steady with increasing Hartmann number but the separation zone characterized by the wake 
length reduces as the Hartmann number increases. This can be explained by the fact that an 
imposed magnetic field in the transverse direction of the flow of a conducting fluid induces 
Lorentz force in the upstream direction. This force has a tendency to suppress the diffusion of 
vortices out of the wall and, hence, shortens the wake. Figure 3(a-c) shows the temporal 
variation of the lift coefficient at different Hartmann numbers for Reynolds number of 50. 
The figure shows that the average lift coefficient is constant at zero after an initial transient 
period. The time histories of the lift coefficient at different Hartmann numbers confirm that in 
each case the flow has reached a time-independent steady state and is symmetric about the 
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centerline. However, the time to reach the steady state decreases with increase in the 
Hartmann number. The time variation of the average drag coefficient at Reynolds number 50 
with different Hartmann numbers is shown in Figure 4(a-c). The drag coefficient also 
confirms the steady nature of the flow. These results show that the steady state is reached 
quicker as the magnetic field strength increases. In addition, it is observed that the average 
drag coefficient increases marginally with increase in Hartmann number. It may be attributed 
to the fact that the increased amount of Lorentz force increases the pressure drop to keep on 
the flow with fixed discharge. This increase in pressure drop due to significant increase in 
pressure on the front contributes to the increase in the pressure drag on the body. 

 
 

 
 

Figure 2. Streamlines at Re = 50 with transverse magnetic field 
(a) mH  = 0.0, (b) mH = 1.0 and (c) mH  = 3.0 
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Figure 3. Temporal growth of lift coefficient at Re = 50 

(a) mH = 0.0, (b) mH = 1.0 and (c) mH  = 3.0 

 

 
 

Figure 4. Temporal growth of drag coefficient at Re = 50 
(a) mH  = 0.0, (b) mH  = 1.0 and (c) mH  = 3.0 
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The flow at Re = 250 without an imposed magnetic field is time-dependent with a very 

long wake due to alternate ‘shedding of vortices’ from the lower and upper part of the 
circular cylinder. The instantaneous streamline pattern for this case is shown in Figure 5(a). 
The streamline patterns for various imposed transverse magnetic fields are shown in Figure 
5(a-d). The snapshots of streamlines show that the flow remains unsteady with periodic 
vortex shedding up to a certain Hartmann number beyond which the flow become steady with 
a closed wake and with further increase in Hartmann number the wake length decreases. 
Since the strength of the shed vortices falls with the gradual increase of the Hartmann 
number, the flow asymmetry and the amplitude of the lift coefficient decrease as shown in 
Figure 6(a-b). With further increase of the Hartmann number the vortex shedding process is 
eliminated and the flows as presented in Figure 5(c-d) are steady, symmetric and 
characterized by closed wakes. The cylinder is subjected to zero lift, shown in Figure 6 (c-d), 
as in very low Reynolds number flow. The evolution of the drag coefficient at different 
Hartmann numbers presented in Figure 7(a-d) also reflects the change in the flow regime. 
There is considerable fluctuation in the drag coefficient when no magnetic force is acting but 
the fluctuation is significantly reduced at mH  = 2.0. The flow remains unsteady at mH  = 2.0 

but the amplitude of oscillations of both the lift and drag coefficient has considerably 
decreased compared to the ‘no imposed magnetic field’. This implies that the strength of the 
shed vortices and the resulting flow asymmetry that essentially generates the lift has 
decreased. This feature of the flow has also been observed in the streamline plots in Figure 
5(a-d). With stronger magnetic field corresponding to mH = 5.5, the periodic vortex shedding 

and the consequent unsteadiness and flow asymmetry are eliminated, as evident from the lift 
and drag coefficient histories in Figures 6(c) and 7(c) respectively. The same physical process 
that shortens the wake also weakens the shed vortices and finally suppresses the shedding if 
the Lorentz force is strong enough. It can be concluded that the amplitude of cross flow 
vibration will reduce significantly for an elastically mounted cylinder with increase in 
Hartmann number and the vibration can be eliminated if the Hartmann number is increased 
appropriately. With further increase in the Hartmann number, the length of the attached wake 
decreases and the drag coefficient slightly increases. The change in the average drag 
coefficient due to the change in magnetic field strength shows a very striking result. It is 
observed that the average drag coefficient decreases marginally with increase in the 
Hartmann number as long as the flow remains unsteady with alternate periodic vortex 
shedding. This marginal drop in drag force can be attributed to the weakened shed vortices 
that nullify the effect of increased pressure drop. However, once the flow becomes steady due 
to sufficiently strong magnetic field the average drag coefficient increases with further 
increase in Hartmann number due to the increased pressure drop. 
 

The range of minimum Hartmann numbers within which the periodic vortex shedding is 
completely suppressed and the initial unsteady flow converts to a steady flow at different 
Reynolds numbers are given in the Table 2. It is seen that the unsteady flow at higher 
Reynolds numbers need stronger magnetic field to become steady. It is also observed that the 
threshold or critical Hartmann number for suppressing the shedding of vortices completely is 
marginally higher for the circular cylinder compared to a square cylinder (Singha et al. 2007). 
The difference is negligible at the Reynolds number of 150, but increases slowly with 
increasing Reynolds number. The difference in terms of the actual magnetic strength is still 
quite small. The most important point, however, is that the shedding can be eliminated in 
both cases with a relatively weak magnetic field. 
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Figure 5. Streamlines at Re = 250 with transverse magnetic field 
(a) mH  = 0.0, (b) mH  = 2.0, (c) mH  = 5.5 and (d) mH  = 7.0 

 
 

 
 

Figure 6. Time history of lift coefficient at Re = 250 
(a) mH  = 0.0, (b) mH  = 2.0, (c) mH  = 5.5 and (d) mH  = 7.0 
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Figure 7. Time history of drag coefficient at Re = 250 
(a) mH  = 0.0, (b) mH = 2.0, (c) mH  = 5.5 and (d) mH = 7.0 

 
 

Table 2: Hartmann number required for suppression of vortex shedding 
 

Reynolds Number Range of mH  

Square cylinder 
(Singha et al. 2007) 

Circular cylinder 
 

150 2.0 – 2.5 2.0 – 2.5 
200 3.5 – 4.0 4.0 – 4.5 
250 4.5 – 5.0 5.0 – 5.5 

 
 

The instantaneous vorticity contours at different Hartmann numbers for Reynolds number 
of 250 are presented in Figure 8(a-g). It is already seen that the flow at Re 250  remains 
unsteady for 5.0mH  but becomes steady in the range 5 5.5mH  . The vortex patterns 

confirm the observation. In the unsteady regime, the alternate periodic vortex shedding from 
the cylinder is evident. However, the arrangement of the vortices in the wake is opposite to 
the classic Karman vortex-street wake that forms in an unbounded flow. In the unconfined 
flow, the vortices of negative and positive sign shed off the upper and lower portion of the 
cylinder respectively and lie above and below the centerline in a staggered vortex array which 
is the key structure of the Karman vortex-street. The vorticity contours shown in Figure 8(a-f) 
reveal that as usual the vortices of negative and positive sign shed from the upper and lower 
portion of the cylinder respectively. However, the arrangement of the vortices is opposite to 
the classic Karman vortex street at a little distance downstream with regard to their vertical 
positions. It seems that the opposite-signed vortices associated with the shear layer of the 
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near wall repel the shed vortices to switch side. Subsequently, the shed vortices attract the 
same-signed vortices in the shear layer of the other side. The interacting effect of the cylinder 
wake vortices on the wall boundary layer growth is evident in the vorticity contours shown in 
the figure. The nearly periodic acceleration and deceleration induced by the wake vortices 
affects the growth of the wall shear layer downstream of the cylinder to give it an unsteady 
undulating appearance. These features are essentially associated with the presence of the 
solid walls as can be concluded from the vorticity contours in Figure 8(a) corresponding to 
the ‘no magnetic field’ case. Zovatto and Pedrizzetti [2001] have reported identical vortex 
structure in the wake of a circular cylinder confined between two parallel plane walls. These 
features of the confined flow are maintained in the presence of imposed magnetic field below 
the critical strength. However, with increasing magnetic field strength the interaction greatly 
reduces as seen in Figure 8(d-f). Finally, the vortex shedding and flow unsteadiness ceases as 
the Hartmann number reaches the critical value.  

 
Figure 9(a) shows the variation in the length of the attached wake in the steady flow 

regime with Hartmann number for several Reynolds numbers. It is observed that at a fixed 
Reynolds number the wake length decreases significantly with increase in Hartmann number. 
The variation is nearly linear within the selected ranges of the parameters. In this respect the 
flow behaviour is identical to the flow about a square cylinder (Singha et al., 2007). The 
variations in Strouhal number with Hartmann number for different Reynolds numbers are 
presented in Figure 9(b). The imposed magnetic field does not appreciably affect the 
frequency of vortex shedding in case of flow over a circular cylinder and the Strouhal number 
remains almost constant for Hartmann numbers below the critical value. This feature of the 
circular cylinder flow is in contrast with the square cylinder flow where the Strouhal number 
increases with Hartmann number until the critical value is reached. The increase is marginal 
at the lower Reynolds numbers but is considerable at the higher Reynolds numbers (Singha et 
al., 2007). 
 
        Figure 10 presents the dependency of the average drag coefficient on the Hartmann 
number at different Reynolds number. The drag coefficient increases steadily with increasing 
Hartmann number in the steady flow regime. The increase is initially slow for Hartmann 
numbers little over the critical value but at higher Hartmann number the increase in drag 
coefficient is quite rapid. In the unsteady regime, the drag coefficient decreases marginally 
with increasing magnetic field strength.  
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Figure 8. Instantaneous vorticity contours at Re = 250 with transverse magnetic field 
(a) 0,mH  (b) 1.0,mH  (c) 2.0,mH  (d) 3.0,mH  (e) 4.0,mH  (f) 5.0,mH  (g) 5.5mH   

 
 
 

 
 

Figure 9. Variation of (a) Wake length and (b) Strouhal number with Hartmann number 
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Figure 10. Variation of mean drag coefficient with Hartmann number 
 
 
 

Conclusions 
 

Low Reynolds number laminar flows around a confined circular cylinder subjected to an 
imposed uniform transverse magnetic field are studied using an unstructured collocated grid 
finite volume implicit incompressible Navier-Stokes solver. The fluid is assumed to have a 
uniform electrical conductivity. The induced magnetic field is assumed to be negligible in 
comparison with the imposed magnetic field which is justified for MHD flows at very small 
magnetic Reynolds numbers. It is observed that in the closed attached wake regime of the 
flow the wake length decreases approximately linearly with increase in Hartmann number. In 
the periodic wake regime the vortex shedding and unsteadiness reduces as the Hartmann 
number increases and if a sufficiently strong magnetic field is applied the vortex shedding is 
suppressed. The limiting Hartmann number at which shedding is suppressed increases with 
Reynolds number. The limiting Hartmann number is marginally greater for circular cylinder 
flows compared to square cylinder flows. The difference increases with Reynolds number. 
The interaction between the vortices shed from the cylinder and wall shear layer is also found 
to decrease with increasing Hartmann number. With increasing Hartmann number the drag 
coefficient is found to decrease marginally in the unsteady flow regime but to increase 
considerably in the steady flow regime. At a Reynolds number of 150 the mean drag 
coefficient falls by nearly 4% as the Hartmann number increases from 0.0 to 2.5 and 
subsequently increases by 48% at Hartmann number of 6.5. The drag coefficient increases 
more rapidly at higher Hartmann numbers. The amplitude of the periodic lift coefficient 
decreases with increase in Hartman number and falls to zero at the limiting Hartmann 
number. It is seen that the Strouhal number at a fixed Reynolds number is insensitive to the 
change in Hartmann number as long as the flow remains unsteady. This characteristic of the 
flow about circular cylinder is in contrast to the flow about square cylinder. 
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Table 1: Comparison of computed results for an unconfined cylinder 

 

 Re  St  meand
C

 rmsl
C

 
Zhou et al. (1999) 100 0.163 1.475 0.219 

Present simulation 100 0.165 1.451 0.226 

Zhou et al. (1999) 200 0.192 1.320 - 

Present simulation 200 0.195 1.337 0.474 

 
 

 



Table 2: Hartmann number required for suppression of vortex shedding 

 

Range of 
m

H  Reynolds Number 

Square cylinder 

(Singha et al. 2007) 

Circular cylinder 

 

150 2.0 – 2.5 2.0 – 2.5 

200 3.5 – 4.0 4.0 – 4.5 

250 4.5 – 5.0 5.0 – 5.5 

 

 
 



 

Figure 1. The computational flow domain 
 

 



      

 
 

Figure 2. Streamlines at Re = 50 with transverse magnetic field  
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Figure 3. Temporal growth of lift coefficient at Re = 50 
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Figure 4. Temporal growth of drag coefficient at Re = 50  
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Figure 5. Streamlines at Re = 250 with transverse magnetic field 
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Figure 6. Time history of lift coefficient at Re = 250 
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Figure 7. Time history of drag coefficient at Re = 250 
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Figure 8. Instantaneous vorticity contours at Re = 250 with transverse magnetic field 
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Figure 9. Variation of (a) Wake length and (b) Strouhal number with Hartmann number 



 

Figure 10. Variation of mean drag coefficient with Hartmann number 
 



  

 

Control of Vortex Shedding from a Circular Cylinder using Imposed 

Transverse Magnetic Field  
 

Sintu Singha and K. P. Sinhamahapatra 

Department of Aerospace Engineering, IIT Kharagpur 

Kharagpur 721302, India 

 

 

Abstract 

 

Purpose - The flow of a conducting fluid past a circular cylinder placed centrally in a 

channel subjected to an imposed transverse magnetic field has been simulated to study the 

effect of a magnetic field on vortex shedding at different Reynolds numbers varying from 50 

to 250. 

Design/Methodology/Approach - The two-dimensional incompressible laminar viscous 

flow equations are solved using a second-order implicit unstructured collocated grid finite 

volume method. 

Findings - An imposed transverse magnetic field markedly reduces the unsteady lift 

amplitude indicating a reduction in the strength of the shed vortices. It is observed, that the 

periodic vortex shedding at the higher Reynolds numbers can be completely suppressed if a 

sufficiently strong magnetic field is imposed. The required magnetic field strength to 

suppress shedding increases with Reynolds number. The simulation shows that the separated 

zone behind the cylinder in a steady flow is reduced as the magnetic field strength is 

increased. 

Originality/Value - Due attention is given to resolve and study the unsteady cylinder wake 

and its interaction with the shear-layer on the channel wall in the presence of a magnetic 

field. A critical value of the Hartmann number for complete suppression of the shedding at a 

given Reynolds number is found. 

 

 

Keywords: transverse magnetic field, Hartmann number, vortex shedding, wake, circular 

cylinder, separation 

 

 

Introduction 

 

The flow over a circular cylindrical body is a common phenomenon in many engineering 

applications. The flow is essentially unsteady except at very low Reynolds numbers less than 

about 50. The steady flow at a low Reynolds number is characterized by steady separation 

and a closed near wake of recirculating flow. At relatively higher Reynolds numbers, the 

relevant unsteady flows are characterized by the periodic shedding of vortices and unsteady 

separated vortex wake. The unsteady flow exerts fluctuating forces on the immersed bodies. 

The fluctuating forces on the bluff body may cause the body to vibrate, which may be severe 

for a range of natural frequency to the vortex shedding frequency ratio, particularly if the 

mass ratio and damping are low. The control of such ‘flow-induced vibration’ can be 

achieved if the vortex shedding and/or the size of the separated zone behind the body are 

controlled. An imposed transverse magnetic field does the job satisfactorily when the fluid is 

electrically conducting. The use of magnetic field in the cross-stream direction is a novel 

method of controlling the separated zone behind the body, which in turn helps to reduce or 



  

eliminate the periodic vortex shedding and the resulting flow-induced vibration in a 

conducting fluid. Bramley [1974a, 1974b] studied the steady two-dimensional incompressible 

MHD flow past a circular cylinder with an applied magnetic field parallel to the main flow 

using analytical and numerical methods. It was observed that with an applied magnetic field 

the flow remained attached to the cylinder longer and in some cases did not separate until the 

rear stagnation point. Gerbeth et al. [1990] studied steady unidirectional MHD flow around a 

cylinder driven by crossed electric and magnetic fields analytically using series solution. 

Josserand et al. [1993] studied the effect of an aligned magnetic field in the flow of a liquid 

metal past a cylinder and observed that the magnetic field could reduce the drag on the 

cylinder and the Karman street behind the cylinder was suppressed for a sufficient value of 

the magnetic field. Mutschke et al. [1998] studied the controlling influence of external 

magnetic field on the wake instabilities in the flow of an electrically conducting fluid around 

a circular cylinder. Midya et al. [2003] investigated the magnetohydrodynamic effect on 

viscous flow in a channel with constriction.  It was observed that the transverse magnetic 

field reduced the size of the separated zone downstream of the constriction and the separation 

could be eliminated with a large magnetic field. The wall shear stress, however, increased 

with the strength of the imposed magnetic field. Sekhar et al. [2006] investigated laminar 

flow past a circular cylinder subjected to inline magnetic field and observed that parallel 

magnetic field reduced the wake length. Singha et al. [2007] studied the effect of an applied 

transverse magnetic field on steady as well as periodic vortex-shedding flow around a square 

cylinder using an explicit staggered grid finite difference method. Recently Knaepen et al. 

[2004], Kassinos et al. [2007], Sarris et al. [2007] have studied the structure of MHD 

turbulence and transport processes in MHD turbulent flows under different conditions using 

LES and DNS techniques. 

  

In the present work, the incompressible viscous flow of an electrically conducting fluid 

around a circular cylinder confined symmetrically between two parallel walls in the presence 

of a uniform transverse magnetic field is studied numerically. The incompressible Navier-

Stokes equations are solved using an unstructured collocated grid finite volume method. The 

solution is advanced in time using a second-order implicit scheme. The study is performed at 

several Reynolds numbers over a range of magnetic-field strength expressed in terms of the 

nondimensional Hartmann number. The study shows that the separated wake length decreases 

with the increase in magnetic field for steady flow cases. The imposed magnetic field reduces 

the strength of the shed vortices and, hence, reduces the flow asymmetry and lift amplitude in 

unsteady flows at higher Reynolds numbers. Moreover, the unsteady flows at higher 

Reynolds numbers can be made steady when the applied magnetic field is sufficiently strong. 

 

Configuration and Numerical Method 

 

The configuration considered is a two dimensional incompressible viscous flow of 

electrically conducting fluid with constant conductivity σ  and density ρ  around a circular 

cylinder of diameter D placed symmetrically between two flat plates as in Figure 1. A 

uniform magnetic field ( )0B  is imposed along the cross-flow direction. The distance between 

the two plane walls (H) is 4D. A parabolic streamwise velocity 

2

1 1 4
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u V
H

  = −  
   

 is 

specified at the inlet, where V  is the centerline velocity. A plane solid wall near a circular 

cylinder can suppress the vortex shedding from the cylinder if the gap between them is less 

than a critical value corresponding to the Reynolds number (Zovatto and Pedrizetti, 2001). 



  

However, a gap space of 1.5D corresponding to the channel height of 4D is well above the 

critical height for suppression of the shedding due to wall influence for Re 100≥ .  

 

Due to magnetohydrodynamic interactions, an induced electric field zE  is produced in 

the direction perpendicular to the
 
plane of the flow, which in turn produces an induced 

magnetic field in the streamwise direction. It is assumed that the flows considered are of very 

small magnetic Reynolds number Rem ( VDµσ= , where V is the characteristic velocity and 

µ  is the permeability) and, hence, the induced magnetic field is negligible so that there is no 

distortion in the imposed magnetic field (Shercliff, 1965). It is also assumed that the magnetic 

field is not distorted near the body due to the differences in permeability and conductivity 

between the solid body and the conducting fluid. Thus, a short-circuited situation is assumed 

as if the induced current is taken through a stationary closed loop made of perfect conductor 

lying in the direction perpendicular to the stream. Consequently, the induced electric 

field ( )zE  becomes zero (Shercliff, 1965) and a net current 0B Qσ  flows normal to the plane 

of the flow, where Q is the fluid volume flow rate. It is further assumed that the electric field 

due to the polarization of charges is negligible. An elegant justification for these assumptions 

is given by Midya et al. [2003] for the flow of a conducting fluid in a channel with 

constriction. The presence of a body in the flow, which usually will have a different 

conductivity, may reduce the accuracy of some of the assumptions. The induced magnetic 

and electric fields will alter the current flow and the current continuity needs to be taken in to 

account for better accuracy. However, when the conductivities of the flowing fluid and the 

cylinder material are nearly of the same order of magnitude and the Hartmann number is 

small, the induced electric and magnetic fields will not be large enough to have significant 

effect on the overall flow behavior. With this assumption, the current continuity is not 

considered in the present study and it is felt that the solution will be able to capture the 

dominant features of the flow both qualitatively and quantitatively. With the consideration of 

the Lorentz forces due to the external magnetic field and the assumptions stated above, the 

governing equations for two-dimensional flows in their nondimensional form are given by  
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In equation (2), 1 1,K =  2 1K =  and Re  is the Reynolds number VD
υ  with υ  being the 

kinematic viscosity. The characteristic velocity V is taken as the centerline inflow velocity 

and the Hartmann number ( )mH  is defined as 0mH B D σ
ρυ= . 

 

 The governing equations (1) and (2) are numerically solved using an unstructured cell-

centered collocated grid finite volume method. Integrated over a small control volume, which 

in this case is a triangular cell of the mesh, the equations can be written as  
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where V is the velocity vector of the fluid element, Ω  and S  denote the nondimensional 

control volume and the bounding surface of the control volume respectively. The unit vector 

normal to the surface S is n̂ and in  denotes the Cartesian component of the unit normal 

vector. 

 

The convective terms in the momentum equation for a cell are computed as the sum of 

fluxes across the three faces where the flux across each face is computed as a product of the 

outward mass flux and the appropriate cell face velocity component. The velocity on a face is 

obtained using a quadratic upwind interpolation (Leonard, 1979) from the velocity at three 

points. Two of these three points are the cell centers on either side of the face and the third 

point is the projection of the distant vertex of the upstream triangle on the line joining the two 

cell centers.  

 

The diffusive terms in the momentum equation integrated over a triangular control 

volume is expressed in the following generic form: 
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The gradients along the face of a control volume are computed using the values of the 

variable at the two adjacent cell centers and at the two terminating vertices of the face. The 

value of the variable φ  at a vertex of the face is obtained by an interpolation from the cell-

centered values of the surrounding cells using the linearity-preserving Laplacian due to 

Holmes and Connel [1989].  The procedure provides the diffusive flux terms for a cell with 

center P in terms of the variable at P and at the center of all the neighboring cells shared by 

the vertices of the cell P. 
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where 1 2 3, ,N N N  are the number of cells connected to the three vertices of the triangular cell 

P. 

 

The source term in the momentum equation representing the Lorentz force is discretized 

using the cell-centered variables and the cell volume. The solution is advanced in time using 

the implicit Crank-Nicolson scheme. The discretized equation is written in the form 
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where P and f denote the cell-centre and a cell face respectively. 
d

F  is the diffusive flux term, 

L is the Lorentz force source term and m is mass flux. The index i =1, 2 denotes the 

streamwise ( )x  and cross-stream ( )y direction respectively. The above equation is solved 

along with the discretized continuity equation written as 
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A provisional velocity field ( )*V is first computed using the latest available mass flux 

and dropping the pressure term from the equation (7). The modified equation is solved using 

a Gauss-Seidel iterative solver. The provisional velocity field is used to compute the cell face 

velocities using the Rhie and Chow [1983] interpolation to avoid the spurious oscillations 

usually associated with a collocated grid incompressible solution. The mass flux is then 

updated and a new pressure field is computed using the updated mass flux ( )*

f
m . 
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The pressure is computed from equation (9) using Gauss-Seidel iteration. The pressure 

field obtained with the provisional velocity field ( )*V does not satisfy the continuity 

equation. An iterative method is used for the convergence of the mass flux fm to a 

predetermined tolerance level. In this ‘inner iteration’, the mass flux is corrected using the 

pressure field just obtained. A new provisional velocity field is then recalculated using the 

equation (7) with the pressure term dropped but the new mass flux included. The pressure 

field is recalculated using the new provisional velocity field. This iterative loop is continued 

until the mass flux is converged. Finally, the velocity field ( )1n
iPu
+

is computed using the 

equation (7) with the converged mass flux and pressure. 

 

The boundary conditions used for the solution are as follows. A convective boundary 

condition is used in the exit plane so that the vortices pass out smoothly. The convective 

boundary condition is taken as  
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The convection velocity cU  is the average of the velocity distribution at the exit plane. The 

no-slip boundary condition is satisfied on all solid boundaries. The pressure satisfies the 

Neumann condition on all boundaries. 



  

  

Results and Discussions 

 

All the computations reported here are carried out on a computational mesh made up of 

58378 triangular elements connecting 29797 vertices. The mesh is adequately refined so that 

the wake and boundary layers are appropriately resolved. To assess the accuracy of the 

developed code, the computed results for flow about a circular cylinder in an unconfined 

domain are compared with the solution due to Zhou et al. [1999]. The comparisons at 

Reynolds numbers 100 and 200 are presented in Table 1. The Strouhal number ( )*

S
St f D V= , 

the mean drag coefficient and the RMS lift coefficient agree quite well with the values 

reported. The parameter *

Sf  denotes the vortex shedding frequency of the rigid cylinder.  

 

The effects of the imposed transverse magnetic field are studied for various Reynolds 

numbers in the range 50 Re 250≤ ≤  with varying magnetic field strength. However, typical 

results for flows at Reynolds numbers 50 and 250 are presented here for brevity. The 

streamlines of the flow at Reynolds number 50 subjected to various imposed transverse 

magnetic fields are shown in Figure 2(a-c). The flow is steady and symmetric about the 

centerline at all Hartmann numbers. With zero Hartmann number, the flow at Re = 50 is time-

independent with a pair of counter-rotating vortices attached to the rear face of the cylinder 

forming a closed wake. The streamlines in the figures clearly show that the flow remain 

steady with increasing Hartmann number but the separation zone characterized by the wake 

length reduces as the Hartmann number increases. This can be explained by the fact that an 

imposed magnetic field in the transverse direction of the flow of a conducting fluid induces 

Lorentz force in the upstream direction. This force has a tendency to suppress the diffusion of 

vortices out of the wall and, hence, shortens the wake. Figure 3(a-c) shows the temporal 

variation of the lift coefficient at different Hartmann numbers for Reynolds number of 50. 

The figure shows that the average lift coefficient is constant at zero after an initial transient 

period. The time histories of the lift coefficient at different Hartmann numbers confirm that in 

each case the flow has reached a time-independent steady state and is symmetric about the 

centerline. However, the time to reach the steady state decreases with increase in the 

Hartmann number. The time variation of the average drag coefficient at Reynolds number 50 

with different Hartmann numbers is shown in Figure 4(a-c). The drag coefficient also 

confirms the steady nature of the flow. These results show that the steady state is reached 

quicker as the magnetic field strength increases. In addition, it is observed that the average 

drag coefficient increases marginally with increase in Hartmann number. It may be attributed 

to the fact that the increased amount of Lorentz force increases the pressure drop to keep on 

the flow with fixed discharge. This increase in pressure drop due to significant increase in 

pressure on the front contributes to the increase in the pressure drag on the body. 

 

The flow at Re = 250 without an imposed magnetic field is time-dependent with a very 

long wake due to alternate ‘shedding of vortices’ from the lower and upper part of the 

circular cylinder. The instantaneous streamline pattern for this case is shown in Figure 5(a). 

The streamline patterns for various imposed transverse magnetic fields are shown in Figure 

5(a-d). The snapshots of streamlines show that the flow remains unsteady with periodic 

vortex shedding up to a certain Hartmann number beyond which the flow become steady with 

a closed wake and with further increase in Hartmann number the wake length decreases. 

Since the strength of the shed vortices falls with the gradual increase of the Hartmann 

number, the flow asymmetry and the amplitude of the lift coefficient decrease as shown in 

Figure 6(a-b). With further increase of the Hartmann number the vortex shedding process is 



  

eliminated and the flows as presented in Figure 5(c-d) are steady, symmetric and 

characterized by closed wakes. The cylinder is subjected to zero lift, shown in Figure 6 (c-d), 

as in very low Reynolds number flow. The evolution of the drag coefficient at different 

Hartmann numbers presented in Figure 7(a-d) also reflects the change in the flow regime. 

There is considerable fluctuation in the drag coefficient when no magnetic force is acting but 

the fluctuation is significantly reduced at 
m

H  = 2.0. The flow remains unsteady at 
m

H  = 2.0 

but the amplitude of oscillations of both the lift and drag coefficient has considerably 

decreased compared to the ‘no imposed magnetic field’. This implies that the strength of the 

shed vortices and the resulting flow asymmetry that essentially generates the lift has 

decreased. This feature of the flow has also been observed in the streamline plots in Figure 

5(a-d). With stronger magnetic field corresponding to 
m

H = 5.5, the periodic vortex shedding 

and the consequent unsteadiness and flow asymmetry are eliminated, as evident from the lift 

and drag coefficient histories in Figures 6(c) and 7(c) respectively. The same physical process 

that shortens the wake also weakens the shed vortices and finally suppresses the shedding if 

the Lorentz force is strong enough. It can be concluded that the amplitude of cross flow 

vibration will reduce significantly for an elastically mounted cylinder with increase in 

Hartmann number and the vibration can be eliminated if the Hartmann number is increased 

appropriately. With further increase in the Hartmann number, the length of the attached wake 

decreases and the drag coefficient slightly increases. The change in the average drag 

coefficient due to the change in magnetic field strength shows a very striking result. It is 

observed that the average drag coefficient decreases marginally with increase in the 

Hartmann number as long as the flow remains unsteady with alternate periodic vortex 

shedding. This marginal drop in drag force can be attributed to the weakened shed vortices 

that nullify the effect of increased pressure drop. However, once the flow becomes steady due 

to sufficiently strong magnetic field the average drag coefficient increases with further 

increase in Hartmann number due to the increased pressure drop. 

 

The range of minimum Hartmann numbers within which the periodic vortex shedding is 

completely suppressed and the initial unsteady flow converts to a steady flow at different 

Reynolds numbers are given in the Table 2. It is seen that the unsteady flow at higher 

Reynolds numbers need stronger magnetic field to become steady. It is also observed that the 

threshold or critical Hartmann number for suppressing the shedding of vortices completely is 

marginally higher for the circular cylinder compared to a square cylinder (Singha et al. 2007). 

The difference is negligible at the Reynolds number of 150, but increases slowly with 

increasing Reynolds number. The difference in terms of the actual magnetic strength is still 

quite small. The most important point, however, is that the shedding can be eliminated in 

both cases with a relatively weak magnetic field. 

 

The instantaneous vorticity contours at different Hartmann numbers for Reynolds number 

of 250 are presented in Figure 8(a-g). It is already seen that the flow at Re 250=  remains 

unsteady for 5.0
m

H ≤ but becomes steady in the range 5 5.5
m

H< < . The vortex patterns 

confirm the observation. In the unsteady regime, the alternate periodic vortex shedding from 

the cylinder is evident. However, the arrangement of the vortices in the wake is opposite to 

the classic Karman vortex-street wake that forms in an unbounded flow. In the unconfined 

flow, the vortices of negative and positive sign shed off the upper and lower portion of the 

cylinder respectively and lie above and below the centerline in a staggered vortex array which 

is the key structure of the Karman vortex-street. The vorticity contours shown in Figure 8(a-f) 

reveal that as usual the vortices of negative and positive sign shed from the upper and lower 

portion of the cylinder respectively. However, the arrangement of the vortices is opposite to 



  

the classic Karman vortex street at a little distance downstream with regard to their vertical 

positions. It seems that the opposite-signed vortices associated with the shear layer of the 

near wall repel the shed vortices to switch side. Subsequently, the shed vortices attract the 

same-signed vortices in the shear layer of the other side. The interacting effect of the cylinder 

wake vortices on the wall boundary layer growth is evident in the vorticity contours shown in 

the figure. The nearly periodic acceleration and deceleration induced by the wake vortices 

affects the growth of the wall shear layer downstream of the cylinder to give it an unsteady 

undulating appearance. These features are essentially associated with the presence of the 

solid walls as can be concluded from the vorticity contours in Figure 8(a) corresponding to 

the ‘no magnetic field’ case. Zovatto and Pedrizzetti [2001] have reported identical vortex 

structure in the wake of a circular cylinder confined between two parallel plane walls. These 

features of the confined flow are maintained in the presence of imposed magnetic field below 

the critical strength. However, with increasing magnetic field strength the interaction greatly 

reduces as seen in Figure 8(d-f). Finally, the vortex shedding and flow unsteadiness ceases as 

the Hartmann number reaches the critical value.  

 

Figure 9(a) shows the variation in the length of the attached wake in the steady flow 

regime with Hartmann number for several Reynolds numbers. It is observed that at a fixed 

Reynolds number the wake length decreases significantly with increase in Hartmann number. 

The variation is nearly linear within the selected ranges of the parameters. In this respect the 

flow behaviour is identical to the flow about a square cylinder (Singha et al., 2007). The 

variations in Strouhal number with Hartmann number for different Reynolds numbers are 

presented in Figure 9(b). The imposed magnetic field does not appreciably affect the 

frequency of vortex shedding in case of flow over a circular cylinder and the Strouhal number 

remains almost constant for Hartmann numbers below the critical value. This feature of the 

circular cylinder flow is in contrast with the square cylinder flow where the Strouhal number 

increases with Hartmann number until the critical value is reached. The increase is marginal 

at the lower Reynolds numbers but is considerable at the higher Reynolds numbers (Singha et 

al., 2007). 

 

        Figure 10 presents the dependency of the average drag coefficient on the Hartmann 

number at different Reynolds number. The drag coefficient increases steadily with increasing 

Hartmann number in the steady flow regime. The increase is initially slow for Hartmann 

numbers little over the critical value but at higher Hartmann number the increase in drag 

coefficient is quite rapid. In the unsteady regime, the drag coefficient decreases marginally 

with increasing magnetic field strength.  

    

 

Conclusions 

 

Low Reynolds number laminar flows around a confined circular cylinder subjected to an 

imposed uniform transverse magnetic field are studied using an unstructured collocated grid 

finite volume implicit incompressible Navier-Stokes solver. The fluid is assumed to have a 

uniform electrical conductivity. The induced magnetic field is assumed to be negligible in 

comparison with the imposed magnetic field which is justified for MHD flows at very small 

magnetic Reynolds numbers. It is observed that in the closed attached wake regime of the 

flow the wake length decreases approximately linearly with increase in Hartmann number. In 

the periodic wake regime the vortex shedding and unsteadiness reduces as the Hartmann 

number increases and if a sufficiently strong magnetic field is applied the vortex shedding is 

suppressed. The limiting Hartmann number at which shedding is suppressed increases with 



  

Reynolds number. The limiting Hartmann number is marginally greater for circular cylinder 

flows compared to square cylinder flows. The difference increases with Reynolds number. 

The interaction between the vortices shed from the cylinder and wall shear layer is also found 

to decrease with increasing Hartmann number. With increasing Hartmann number the drag 

coefficient is found to decrease marginally in the unsteady flow regime but to increase 

considerably in the steady flow regime. At a Reynolds number of 150 the mean drag 

coefficient falls by nearly 4% as the Hartmann number increases from 0.0 to 2.5 and 

subsequently increases by 48% at Hartmann number of 6.5. The drag coefficient increases 

more rapidly at higher Hartmann numbers. The amplitude of the periodic lift coefficient 

decreases with increase in Hartman number and falls to zero at the limiting Hartmann 

number. It is seen that the Strouhal number at a fixed Reynolds number is insensitive to the 

change in Hartmann number as long as the flow remains unsteady. This characteristic of the 

flow about circular cylinder is in contrast to the flow about square cylinder. 
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